Detecting exhaustion during physical exertion with smart sportswear

Sports
Detecting exhaustion during physical exertion with smart sportswear
Researchers at ETH Zurich have developed an electronic yarn capable of precisely measuring how a person's body moves. Integrated directly into sportswear or work clothing, the textile sensor predicts the wearer's exhaustion level during physical exertion.

Exhaustion makes us more prone to injury when we're exercising or performing physical tasks. A group of ETH Zurich researchers led by Carlo Menon, Professor of Mobile Health Technology, have now developed a textile sensor that produces real-time measurements of how exhausted a person gets during physical exertion. To test their new sensor, they integrated it into a pair of athletic leggings. Simply by glancing at their smartphone, testers were able to see when they were reaching their limit and if they ought to take a break. The new technology is published in the journal Advanced Materials.

This invention, for which ETH Zurich has filed a patent, could pave the way for a new generation of smart clothing: many of the products currently on the market have electronic components such as sensors, batteries or chips retrofitted to them. In addition to pushing up prices, this makes these articles difficult to manufacture and maintain.

By way of contrast, the ETH researchers' stretchable sensor can be integrated directly into the material fibers of stretchy, close-fitting sportswear or work clothing. This makes large-scale production both easier and cheaper. Menon highlights another benefit: "Since the sensor is located so close to the body, we can capture body movements very precisely without the wearer even noticing."

An extraordinary yarn
When people get tired, they move differently—and running is no exception: strides shorten and become less regular. Using their new sensor, which is made of a special type of yarn, the ETH researchers can measure this effect.

It's all thanks to the yarn's structure—the inner fiber is made of a conductive, elastic rubber. The researchers wrapped a rigid wire, which is clad in a thin layer of plastic, into a spiral around this inner fiber. "These two fibers act as electrodes and create an electric field. Together, they form a capacitor that can hold an electric charge," says Tyler Cuthbert, a postdoc in Menon's group, who was instrumental in the research and development that led to the invention.
Source: medicalxpress.com
Tags :
Share This News On: